
Annals of Management Science

Vol. 3, No. 1, May 2014, 43-64

Computing a hybrid preconditioner approach to solve the linear

systems arising from interior point methods for linear

programming using the conjugate gradient method

Carla T. L. S. Ghidini

a
, A. R. L. Oliveira

a*
and D. C. Sorensen

b

a
University of Campinas (UNICAMP), 13083-859 Campinas - SP, Brazil

b
Department of Computational and Applied Mathematics,Rice University

Houston Texas, U.S.A.

Abstract

In this work, iterative methods are used to solve the linear systems of equations

arising from interior point methods. Since these systems of equations are very

ill-conditioned near a solution, the design of specially tailored preconditioners

is an important implementation issue. On the other hand, the early linear

systems of equat ions do not present the same features and it is advisable to

adopt hybrid preconditioners that begin as a generic preconditioner and adapt

during the course of the iteration, becoming ever more specialized as convergence

takes place. During the initial iterations, a controlled Cholesky factorization is

used. As convergence takes place, a splitting, the splitting preconditioner is

adopted. Its major advantage is its excellent behavior near a solution of the

linear program. This desirable feature has a price. The preconditioner could be

very expensive to compute. A careful implementation must be performed in

order to achieve competitive results regarding both: speed and robustness. An

effective implementation of the splitting preconditioner relies upon finding a

suitable set of linearly independent columns to form a nonsingular matrix from

the constraint matrix. Several strategies to help finding such set of columns are

presented. Numerical experiments are carried out in order to illustrate the

performance of the given strategies.

Keywords: linear programming, interior point methods, preconditioning.

1. Introduction

The development of sophisticated software to solve linear optimization problems

by interior point methods has started since the early works on this subject. There

are three main research lines aimed at improving the efficiency of such methods

for solving large-scale problems: reduction of the total number of iterations,

techniques to obtain a fast iteration and specific methods for particular classes of

problems.

*
 Corresponding author. Email: aurelio@ime.unicamp.br

44 C. Ghidini, A. Oliveira and D. Sorensen

This work addresses the second one. Iterative methods are used to solve the

linear systems of equations which are the most expensive step at each iteration of

interior point methods. Since such systems are very ill-conditioned near a

solution, the design of specially tailored preconditioners is an important

implementation issue. On the other hand, since the early linear systems do not

present the same features, it is advisable to adopt hybrid preconditioners that

begin as a generic preconditioner and adapt during the course of the iteration,

becoming ever more specialized as convergence takes place (Bocanegra et al.,

2007).

During the initial iterations a controlled Cholesky factorization is adopted

(Campos & Birkett, 1998). Its major advantage is the control parameter that

allows the preconditioner to vary all way from a diagonal preconditioner to the

full Cholesky factorization, if desired. At the onset of convergence, a splitting

preconditioner is used (Oliveira & Sorensen, 2005). Its major advantage is its

excellent behavior near a solution of the linear program. However, this desirable

feature has a price: the preconditioner could be very expensive to compute. A

careful implementation must be performed in order to achieve competitive

numerical results regarding both: speed and robustness. An effective

implementation of the splitting preconditioner depends crucially upon finding a

suitable set of linearly independent columns to form a nonsingular matrix, to be

factored, from the constraint matrix.

 There are several techniques for finding such a set of columns such as the

delayed update form for the LU factorization, the symbolic dependent columns,

the symbolic independent columns, the combination of symbolic dependent and

independent columns and strongly connected components. Some are well known

and already applied in other contexts (Coleman & Pothen, 1987; Duff & Reid,

1986; El-Bakry et al., 1994). Others were developed to compute the splitting

preconditioner (Oliveira, 1997; Oliveira & Sorensen, 2005). Among the

techniques used is the study of the nonzero structure of the constraint matrix to

speed up the numerical factorization, such as using key columns, symbolically

dependent and independent columns, finding strongly connected components

(Oliveira & Sorensen, 2005). Other implementation issues, include ways for

changing preconditioners, are also discussed in (Ghidini et al., 2012; Velazco et

al., 2010).

 The choice of the controlled factorization is justified due to the

possibility of computing an inexpensive preconditioner in the initial interior

point iterations and, as the linear systems become more ill conditioned, the

controlled preconditioner can be improved with just the change of a parameter

value. Numerical experiments illustrating the effectiveness of such strategies in

order to solve large scale linear programming problems are presented in

Bocanegra et al. (2007) and Velazco et al. (2010).

 This work is organized as follows: Section 2 presents the predictor-corrector

interior point method, defines its search directions and explains how to solve the

resulting linear systems of equations. The controlled Cholesky factorization and

Annals of Management Science 45

splitting preconditioners are discussed in this section. Sections 3 and 4 study

several techniques in order to achieve an efficient implementation of the splitting

preconditioner. In Section 5 the numerical experiments are shown and discussed.

Conclusions follow in Section 6.

2. Primal-Dual interior point methods

Consider the linear programming problem in the standard form:

Min c

t
x

s.t. Ax = b , (2.1)

 x ≥ 0,

where A is a full row rank m×n matrix and c, b and x are column vectors of

appropriate dimension.

 Associated with problem (2.1) is the dual linear programming problem

Max b
t
 y

s.t. A
t
 y + z = c, (2.2)

 z ≥ 0,

where y is an m-vector of free variables and z is the n-vector of dual slack

variables. The duality gap is defined as c
t
x - b

t
y. It reduces to x

t
z for feasible

points.

 Since Karmarkar (1984) presented the first polynomial time interior point

method for linear programming, many methods have appeared. One of the best

among them is the predictor-corrector method (Mehrotra, 1992; Momoh et al.,

1999). In the predictor-corrector approach, the search directions are obtained by

solving two linear systems of equations by applying Newton’s methods to the

KKT conditions. First we compute the affine directions:

p

a

d

t

r

r

r

=

y

z

x

A

XZ

AI

~

~

~

.

00

0

0

, (2.3)

where X = diag(x), Z = diag(z) and the residuals primal, dual and complementarity

are given by: rp = b - Ax, rd = c - A
t
y - z and ra = -XZe and e is the vector of all

ones. Then, the search directions (∆x, ∆y, ∆z) are computed solving (2.3) with ra

replaced by

rc = µe - X Z e - eZ
~

X
~
 ,

where µ is the centering parameter.

46 C. Ghidini, A. Oliveira and D. Sorensen

Multiple corrections could be computed in order to improve the predictor

corrector (Gondzio, 1996). Each additional direction is obtained by solving one

linear system of equations with the matrix given above.

2.1. Computing the Search Directions

The computational cost at each iteration is dominated by the solution of linear

systems such as (2.3). Since the systems share the same matrix, we will restrict

the discussion to one linear system.

By eliminating the variables ∆z the system reduces to:

p

ad
t

r
rXr

=
Δy
Δx

.
 A
AD 1

0
, (2.4)

where D = X
-1

Z is an n×n diagonal matrix and the lower block diagonal matrix 0

has dimension m×m (recall that A ∈ ℜm×n). We refer to (2.4) as the augmented

system.

Eliminating ∆x from (2.4) we get ADA
t
 ∆y = rp + A(Drd – Z

-1
ra), which is

called the normal equations system.
We remark that the augmented and normal systems of equations for problems

with bounded variables have the same structure as the systems of equations in the

standard form. Therefore, the ideas developed here can be readily applied to such

problems.

2.2. Approaches for Solving Linear Systems of Equations

Using the Cholesky factorization of the normal systems of equations for

computing the search directions in interior point methods is by far the most

widely used approach (see for example (Adler et al.,1989; Czyzyk et al., 1999;

Gondzio, 2012). However, the factored matrix can have much less sparsity and is

often more ill-conditioned than the matrix of the augmented system (2.4). Solving

the augmented system by direct methods is another option (Bergamaschi et al.,

2004; Al-Jeiroudi et al., 2008). However, the sequence of pivots in the

decomposition depends on the numerical values and this approach while robust, is

in general more expensive (Gondzio, 2012). Moreover, the direct approach

cannot be applied for some classes of large scale problems due to memory

and/or time limitations. For these problems, a preconditioned iterative method

for the solution of the linear system would be the chosen approach

(Bergamaschi et al., 2007; Bocanegra et al., 2007; Oliveira & Sorensen, 2005).

In most applications, however, it is essential to modify a linear system of

equations that is very difficult to solve to obtain an equivalent system that is

easier to solve by the iterative method. This technique is known as

preconditioning. Again, whenever the choice between the augmented systems or

the normal systems of equations arises, most researchers chose to solve the

Annals of Management Science 47

augmented system since it is less ill-conditioned (Bergamaschi et al., 2007; Chai

& Toh, 2007; Gondzio, 2012). We work with the normal systems equations

because it is positive definite, allowing the use of the conjugate gradient method.

In addition, the splitting preconditioner works very well in the final iterations

where the linear system is highly ill-conditioned.

 Since the iterative methods require matrix only for computing matrix-

vector products, there is no need to compute the normal equations unless the

preconditioner depends on it. On the other hand, a new trend in the past few years

is to use of simple linear programming methods in order to give an advanced

starting point for interior point methods. This reduces the total number of

iterations. The von Neumann's algorithm is one of the first to be used in such

applications since its iteration is very cheap and it has fast initial convergence

(Dantzig & Thapa, 1992).

 In this work, we perform a few iterations of the optimal adjustment

algorithm for p coordinates (Ghidini et al., 2012), a simple linear programming

method, before the change of preconditioners, to deliver a point closer to an

optimal solution for the splitting preconditioner. This approach closes the gap in

the transition of preconditioners for some tested problems.

2.3. The Splitting Preconditioner

The Splitting preconditioner, proposed in Oliveira and Sorensen (2005), is a

generalization of the preconditioner proposed in Resende and Veiga (1993) in the

context of the minimum cost network flow problem.

The splitting preconditioner is computed as follows:

Let A = [B N]P, where P ∈ ℜn×n is a permutation matrix such that B ∈ ℜm×m is

nonsingular and N ∈ ℜm×(n-m), then

 .NNDBBD
N
B.

D
D

.NB
N
BPDPNBADA t

N
t

Bt

t

N

B
t

t
tt

0

0

The preconditioner is given by 121 BD /
B and the preconditioner matrix M is

as follows:

 t
m

/
B

tt/
B GG+I=DBADABDM 21121 ,

where 21121 /
N

/
B NDBDG .

 The product B
-1

N can be seen as a scaling of the linear programming

problem. Close to a solution, at least n - m entries of D are small. Thus, with a

suitable choice of the B columns, the diagonal entries of
1

BD and DN become very

small. In this situation, G approaches the zero matrix, M approaches the identity

matrix and both the largest eigenvalue of M and 2(M) approach one.

48 C. Ghidini, A. Oliveira and D. Sorensen

2.4. Controlled Cholesky Factorization Preconditioner

The Controlled Cholesky Factorization (CCF) preconditioner, designed for

solving general positive definite systems (Campos & Birkett , 1998), can be

seen as a variation of the incomplete Cholesky factorization. The main objective

of this factorization is to build a preconditioned matrix that has grouped

eigenvalues and which is near the identity in order to accelerate the convergence

of the conjugate gradient method.

 The Cholesky factorization of the matrix ADA
t
 is as follows:

RLLLLADA ttt ,

where L represents the factor obtained when the factorization is complete, L

represents a factor obtained when factorization is incomplete and R is a

remainder matrix.

 Matrix L is used as a preconditioner matrix for ADA
t
,

tt LADAL 1 tttt LLLLLLLL= 11 .

 Let F = LL . Replacing L in the last equation, we have

 .FL +IFL +I=LADAL
t-

m
-

m
tt 111

 Note that when LL then F 0 and, therefore, m
tt ILADAL 1 .

 The controlled Cholesky factorization is based on the minimization of the

Frobenius norm of F. Therefore, when ||F||0 then ||R||0.

 Consider the following problem:

Min

m

j jF
cF

1

2
, with

2

1

m

j ijijj llc ,

where, lij are elements of L.

 Splitting cj in two sums leads to:

,lllc
m

tk ji

t

k jijij
j k

j

kk

2

1

2

1

where tj is the number of nonzero entries below the diagonal in the jth column

of matrix ADAt and η is the number of extra entries allowed per column in the

incomplete factorization.

 The first summation contains all tj + η nonzero entries of the jth column

of L . The second one has only the remaining entries of the complete factor L

Annals of Management Science 49

which do not have the corresponding entries in L . Thus, the problem can be

solved using the following heuristic:

1. Increasing η (allowing more fill-ins). The term cj should decrease

because the first summation contains more elements.

2. Choosing the tj + η largest entries of L in an absolute value for

fixed η. In this case, the largest entries are in the first summation

leaving only the smallest lij in the second one.

The preconditioner L is built by columns. Consequently, it needs only the

jth column of ADA
t

at each time, avoiding the computation of the normal

equations system.

2.5. A Hybrid Preconditioner

Matrix D changes significantly from one interior point iteration to the next and it

becomes highly ill-conditioned in the final ones. For this reason, it is difficult to

find a preconditioning strategy that has a good performance over the entire course

of the interior point iterations.

 In Bocanegra et al. (2007) it was proposed to apply the conjugate gradient

method to solve the normal equations system preconditioned by a hybrid

preconditioner matrix M,

 pad
tt rrXrADMyMADAM 111 ,

where yMy t . This approach assumes the existence of two phases during

interior point iterations. In the first one, the controlled Cholesky preconditioner is

used to build matrix M. After the change of phases, matrix M is built using the

splitting preconditioner.

 In Velazco et al. (2010), a heuristic for change of preconditioners was

proposed. If the number of iterations needed for the conjugate gradient method to

achieve convergence is greater than m/6, the parameter η in the controlled

Cholesky factorization is increased, i e, η = η + 10. The change occurs when η

exceeds a fixed maximum η. However, this approach can fail to achieve

convergence for some classes of linear programming problems when the

controlled Cholesky factorization is not longer effective and at the same time, the

splitting preconditioner is not yet ready for the job. In order to improve this

approach, simple algorithms are used in the iteration where the change of phases

occurs giving a more advanced point towards optimality just before the splitting

preconditioner is applied (Ghidini et al., 2012).

50 C. Ghidini, A. Oliveira and D. Sorensen

3. Practical Aspects

In this section we discuss a few issues concerning the splitting preconditioner not

directly related to finding the linearly independent set of columns that form B.

3.1. Inexact Solutions

An idea that immediately comes to mind when using iterative procedures for

solving the linear systems is to relax the required tolerance. Thus, we start the

interior point method with a relaxed tolerance (10
-4

) and, whenever an iteration

does not (at least) halve the gap (x
t
z), the tolerance is changed to the square root

of machine epsilon.

 In the context of the predictor-corrector variant there is another place for

applying this idea. Recall that for computing the search directions, two linear

systems are solved. The first one gives the perturbation parameter and the

nonlinear correction for the Newton's method. The second one can be written in

such a way that it gives already the final search directions. Thus, the first linear

system may be solved with a more relaxed tolerance than the second one.

3.2. Discarding Dependent Rows

In order for the splitting preconditioner to be built, the constraint matrix A cannot

have dependent rows. The following procedure finds the dependent rows and

discards them before the interior point method starts.

 The techniques to be described in the next section for finding B can be

applied to the columns ordered by degree. Moreover, rows containing entries that

are part of singleton columns can be ignored in this factorization since these rows

are necessarily independent. This idea can be applied in the resulting matrix until

there are no longer any singleton columns. Thus, finding dependent rows is

inexpensive most of the time. Actually, there are problems like those with only

inequality constraints where no factorization is performed at all. This

factorization can be computed even more efficiently (Andersen, 1995).

4. Computing the Splitting Preconditioner

This class of preconditioners is not a competitive alternative to the direct method

approach for computing the Cholesky factorization without a careful

implementation. This is due to the computation of an LU factorization where the

set of independent columns is unknown at the start of the factorization. This

factorization may be too expensive for two reasons. First, it may generate too

many fill-in entries. Second, it may be necessary to factor too many columns

before the completion of the factorization since the dependent columns must be

discarded. Several techniques for the implementation of a competitive code are

discussed below. Most of the techniques presented here concern the computation

Annals of Management Science 51

of the LU factorization and are used on the numerical experiments presented in

Section 5.

 Given a good choice of columns from A to form B, this preconditioner

should work better close to a solution, where the linear systems are highly ill-

conditioned. A strategy to form B is to minimize 21121 /
N

/
B NDBD . This problem is

hard to solve. However, it can be approximately solved with a simple heuristic.

Select the first m linearly independent columns of AD
-1

with smallest 2-norm.

This choice of columns tends to produce better conditioned matrices as the

interior point method approaches a solution, where the linear systems are highly

ill-conditioned (Velazco et al., 2010).

 A partition of matrix A has been used before as a preconditioner for

network interior point methods (Resende & Veiga, 1993). In this situation B is a

minimum spanning tree and is easy to find. Therefore, the splitting preconditioner

can be viewed as a generalization. We also remark that the rules for choosing the

set of columns are not the same.

4.1. Scaling the Columns

Looking at the expression 2121 /
B

tt/
N DBNDG again, it is tempting to scale the

matrix after selecting the columns of B such that || G || 0. Lemma 1 shows that

this idea is not easy to implement since the scaling will disappear on the

preconditioned matrix (Oliveira, 1997).

Lemma 1 Consider the following scaling of the augmented system

.
b
b

.
I

C
=

Δy
Δx

.
I

C.
I

C
.

 A
AD.

I
C t

2

1
1

0
0

0
0

0
0

00
0

Then the preconditioned matrix is independent of the scaling matrix C.

Proof. The scaled matrix is given by

0A

~
A
~

CDC t

,

where ACA
~
 . Its preconditioned form is as follows

P
IDBND

NDBDI
P

/
B

tt/
N

/
N

/
Bt

2121

21121

,

where AP
t
 = [B N]. This form is independent of C.

 It is still possible to use the idea of scaling with good results. After

computing the first LU factorization, the columns not on B can be rescaled giving

52 C. Ghidini, A. Oliveira and D. Sorensen

a new linear programming problem. With a proper choice of the scaling factor,

the first linear systems will be better conditioned than before and yet the problem

will not be badly scaled. Before a second LU factorization is computed, the

original linear programming problem is recovered by undoing the scaling.

Therefore, the linear programming problem will be properly scaled for the

remainder of the procedure and the first iterations of the interior point method

generate better conditioned systems which are the most difficult for this class of

preconditioners.

4.2. Keeping the Set of Columns

A good property of the splitting preconditioner is that it enables us to work with a

selected set of columns for some iterations. As a consequence, the preconditioner

is very cheap to compute for these iterations.

It is important to note that keeping the matrix B from previous iterations

does not mean the same preconditioner will be kept since D will change from

iteration to iteration. Thus, this strategy gives different preconditioners at each

iteration that are very easy to compute. However, such preconditioners do not

have the best column set after the first factorization according to the heuristic.

Table 1: KEN13 - New Factorization versus Keeping LU

Version Factorizations M-Flops Factorization LU

time (s)

Triangular systems

time (s)

Standard 25 117 74.16 24.82

Keep LU 4 426 15.46 56.06

 Table 1 illustrates this idea. In column version we have the standard

approach of computing a factorization at every iteration against the idea for

keeping the factorization. A new LU factorization is computed whenever the

preconditioned conjugate gradient method takes more than n/30 iterations to

converge, where n is the dimension of the linear system. Notice that this version

computes only four factorizations and it is faster than the standard approach.

However, it takes more floating point operations on average for solving a linear

system. The explanation is that there is a high overhead on computing the LU

factorization. In contrast, the solution of the triangular systems is straightforward

with practically no overhead.

In the experiments given later we change the set whenever the iterative

method takes more iterations than a certain threshold value (m
1/2

) or when the

solution given by it is not accurate.

4.3. Incomplete LU Factorization

It was observed in practice that the LU factorization often generates too many fill-

in entries. The reason is that no reordering procedure for reducing the number of

Annals of Management Science 53

fill-ins can be used since the columns of the matrix are not known until they are

accepted as linearly independent.

Here we discuss another possibility. It consists of computing an

incomplete LU factorization. The standard incomplete factorization, where the

nonzero structure of the original matrix coincides with the nonzero structure of

the triangular matrices L and U, does not work well for this problem (Oliveira,

1997). On the other hand, the use of drop tolerance seems to be a viable approach.

The idea is to eliminate any entry smaller than a preset value. For a carefully

chosen tolerance, this technique can be very useful and it actually gives better

performance on some of the problems tested in very preliminary experiments.

This line of research deserves more investigation.

4.4. Using Indicators

Another approach that can be exploited for reducing work on the factorizations

when the interior point method is close to the solution is the use of indicators (El-

Bakry et al., 1994). An indicator is a tool for determining if a column is not part

of any optimal basis before the method converges. Such columns can thus be

eliminated from the problem. In the context of this work, indicators can be used to

keep these columns at the end of the list for finding an independent set of

columns, saving work on the factorization. Since these columns are not being

eliminated from the problem, it is possible to be less rigorous on the way they are

determined without taking the risk of getting a wrong solution for the linear

programming problem. Observe that the diagonal entries of D are also valid

indicators. Thus, the approach adopted as standard in Section 5 actually uses a

kind of indicator for reordering the columns although on a different manner

compared to the one described here.

4.5. LU Factorization

For this application, the most economic way to compute the LU factorization is to

work with the delayed update form. When a linearly dependent column appears, it

is eliminated from the factorization and the method proceeds with the next

column in the ordering.

One of the main drawbacks of a straightforward implementation of the

splitting preconditioner is the excessive fill-in in the LU factorization. A good

technique consists of interrupting the factorization when excessive fill-in occurs

and reordering the independent columns found thus far by the number of nonzero

entries. The factorization is then restarted from scratch and the process is repeated

until m independent columns are found. In our implementation we consider a

factorization to have excessive fill-in if it produces more nonzero entries than the

normal equations system.

54 C. Ghidini, A. Oliveira and D. Sorensen

4.6. Avoiding Dependent Columns

A more sophisticated approach should identify a set of columns that have

dependent relationship with another column. Information about such relationship

can be used to reduce computational time and effort on the following

factorizations by not considering these columns whenever they appear behind this

set in the new ordering.

 In order to have an efficient search for these sets and to avoid excessive

use of computer memory, this type of information can be stored at the bit level.

Thus, if A has n columns, a set can be stored on n bits and operating with these

bits will be much faster than managing arrays of indices. Moreover, memory

restriction can be a critical issue if arrays are used for storing these sets for large

scale problems. A hash function could also be used to speed up the

implementation of this approach.

4.7. Computing a Second LU Factorization

A second factorization is applied on the chosen set of independent columns using

standard techniques for computing an efficient sparse LU factorization. This

approach improves the results significantly for some problems because the

reduction of the floating point operations on the iterative linear system solver

compensates the extra work for computing the factorization. It also benefits better

form the predictor-corrector variant because the preconditioner is used for solving

two linear systems. Therefore, the second factorization is always performed. As a

welcome side effect, it is not necessary to store U in the factorizations that

determine B.

 Table 2 illustrates this savings for problem Truss. This problem is part of

the Netlib test collection of linear programming problems (Gay, 1985). The

dimension of the linear system is 1000. Only the iterations where the second LU

factorization is computed are shown.

The second factorization is computed whenever the number of nonzero

entries of L plus U is more than four times the dimension of the linear system.

The second approach saves work because the time for solving the linear systems

with a more sparse preconditioner compensates the time for computing the second

factorization.

The following techniques are the default options for the second LU

factorization on our code. We stress that it is not possible to use them on the first

LU factorization because the structure of B is not known prior to the factorization.

The columns are permuted by the ordering of B
t
B given by the minimum

degree ordering. We included a threshold parameter for the choice of the pivot. At

each step of the factorization, we chose a row permutation with the pivot being

chosen among all candidates within the threshold. The one with least entries on its

row for the remaining columns of the original matrix is chosen. We also find

Annals of Management Science 55

strongly connected components to rewrite the matrix in a block triangular form,

as usually done in square LU factorization.

Table 2: Truss number of nonzero entries

IP Nonzero Entries Factorization time (s) Triangular systems

time (s)

Iteration First LU Second LU First LU Second LU First LU Second LU

7 21713 15202 0.32 0.35 1.47 0.92

8 27367 15797 0.23 0.25 1.50 0.83

9 28159 19195 0.19 0.19 1.13 0.52

10 37436 17933 0.26 0.28 1.01 0.44

11 41139 18051 0.35 0.37 1.33 0.32

12 37369 18140 0.50 0.53 2.22 0.25

13 37060 17540 0.71 0.75 0.55 0.22

14 41858 17616 0.46 0.48 0.81 0.20

15 39400 20661 0.52 0.54 0.83 0.19

16 40832 17191 0.35 0.38 1.40 0.17

17 43442 21716 0.37 0.40 2.11 0.18

18 40826 23510 0.37 0.40 0.38 0.16

M-Flops 106.8 86.1

4.8. Early Detection of Dependent Columns

One difficulty in determining the subset of independent columns relates to the

number of dependent columns visited in the process. An approach is to verify

whether a column is dependent or not during the delayed update form of the LU

factorization. If we find that a candidate column is already dependent on the first

say, k columns, it is useless to continue updating the candidate column for the

remaining columns of L.

4.9. Symbolically Dependent Columns

Given a column ordering, we want to find the first set of m independent columns.

The brute force approach for this problem consists in computing the factorization

column by column and discarding the (nearby) dependent columns along the way.

The strategies developed here will indicate when a column can be ignored in the

factorization. The set of independent columns found by these techniques is the

same set obtained by the brute force approach.

Symbolically dependent columns are columns that are linearly dependent

in structure for all numerical values of their nonzero entries. The idea is to find a

set of say k columns with nonzero entries in at most k-1 rows. This set of

columns is symbolically dependent.

Let us first consider a square matrix for simplicity. In this situation, the

problem is equivalent to permuting nonzero entries onto the diagonal. This

56 C. Ghidini, A. Oliveira and D. Sorensen

problem is equivalent to finding a matching of a bipartite graph where the rows

and columns form the set of vertices and the edges that are represented by the

nonzero entries. This idea was first used by Duff (1981) and it is applied as a first

step for permuting a matrix to block triangular form. If a nonzero entry cannot be

assigned to the diagonal in the matching process for a given column, that column

is symbolically dependent.

 In Coleman & Pothen (1987) this idea is extended to rectangular matrices.

The authors are concerned with finding a set of independent columns of the

matrix which gives a sparse LU factorization. Thus, the columns are reordered by

degree and the matching algorithm applied giving a set of candidate columns,

denoted here as key columns, which are not symbolically dependent.

Our idea for using the key columns comes from the fact that the number of

independent columns before the kth key column on the matrix is at most k-1.

Therefore, it is possible to speed up the LU factorization whenever we find k-1

numerically independent columns located before the kth key column. The speed

up is achieved by skipping all the columns from the current one to the kth key

column.

4.10. Matching During the Factorization

Sometimes the use of key columns does not save too much work. The reason is

that often these columns are numerically dependent. Another way to save floating

point operations is to compute the matching during the factorization. Thus, before

we update the column we verify whether it is symbolically dependent or not. If it

is, the column is discarded and the factorization continues with the next column.

This technique can save computational work because the matching can be

done on the original matrix instead of the factored one. Moreover, no floating

point operation is performed. If many columns are dependent, the overhead

caused for the ones that are not dependent is compensated reducing the overall

time for computing the factorization.

4.11. Symbolically Independent Columns

Symbolically independent columns are columns that are linearly independent in

structure for all numerical values of their nonzero entries. A powerful strategy

consists in moving the symbolically independent columns to the beginning of the

ordered list since those columns are necessarily going to be in the factorization.

Then these columns can be reordered further in order to reduce the number of fill-

ins in the LU factorization. Notice that the symbolically dependent columns can

be ignored in this step. Thus, we are concerned only with the key columns given

by the matching algorithm.

We are not aware of any efficient algorithm for finding all the

symbolically independent columns from a given ordered set. Therefore, we use

heuristic approaches to identify some of the symbolically dependent columns.

Annals of Management Science 57

On the description of the heuristic below, we say that column j is the first

entry column of row i if j contains the first nonzero entry in row i on the ordered

set. We consider a column j symbolically independent given an ordered set if at

least one of the following rules applies:

1. Column j is the first entry column of at least one row;

2. Column j is the second entry column of a row i and the first entry

column of row i is also first entry column for at least another row not present on

column j.

 This set of rules guarantees that the columns selected are symbolically

independent but it does not guarantee that all symbolically independent columns

are found.

4.12. Key Columns and Independent Columns

Another use for key columns is to anticipate the sparse structure of the B matrix

to be factored. This information can be used to reduce the number of fill-in

entries on the factorization. This idea works fine for some problems but it

deteriorates the preconditioner computational performance on other too much.

Therefore, it cannot be used as the default approach. One criterion to decide on

using this approach is the number of symbolically independent columns found. If

this number is close to the total number of columns, the key columns give a better

approximation of the sparsity pattern of B since most of the columns in the

factorization are known.

4.13. Merging Symbolically Independent and Dependent Columns

After reordering the symbolically independent columns, it may be possible to

reduce still further the number of fill-ins in the factorization by merging the

symbolically independent and dependent list of columns using the number of

nonzero entries as the criterion. This is allowed whenever the symbolically

independent columns remain so.

It is very expensive to verify whether the columns remain symbolically

independent at every step of the merging process. Therefore, we use the first

ordering of the columns as a cheap heuristic. Thus, we move up on the list a

symbolically dependent column with lower degree provided it remains behind the

symbolically independent columns with lower index on the first ordering. This

idea can be implemented very efficiently.

By placing columns with lower degree into the front we hope to reduce the

number of fill-ins in the factorization. However, since the symbolically dependent

columns are less likely to be in the factorization, this approach is not as effective

as other approaches presented in this section.

58 C. Ghidini, A. Oliveira and D. Sorensen

4.14. Strongly Connected Components

This approach is applied to the key columns. Since the key columns are

determined by a matching procedure, a permutation for computing the strongly

connected components is already at hand. Given the strongly connected

components, their columns are reordered by the splitting criterion.

In Oliveira & Sorensen (2005) it has been proved that we can look for the

first symbolically dependent column in its own component considering only the

rows from the respective component. All columns with smaller index in the

ordering are symbolically independent.

Notice that with this approach, the heuristics for finding symbolically

independent columns can be applied inside each diagonal block.

5. Numerical Experiments

In this section we present several numerical experiments with the hybrid

preconditioner approach. The experiments are meant to show how the techniques

for computing the splitting preconditioner work together and to determine which

ones are going to be adopted as default.

 The procedures for solving the linear systems with the splitting

preconditioner are coded in C and applied within the PCx code (Czyzyk et al.,

1999), a state of the art interior point methods implementation. PCx’s default

parameters are used except that multiple corrections are not allowed and all

tolerances for the interior point are set to 10
−8

.

 All the experiments are carried out on an Intel Core 2 Duo 64 bits, 2GB

RAM and 2.2GHz with operating system Linux. The floating point arithmetic is

IEEE standard double precision.

5.1. Stopping Criterion

The preconditioned conjugate gradient method is used with a termination criterion

set by the Euclidean residual norm || . ||2. For solving both systems (affine

direction and final direction), the termination criteria is set as ||rk|| < 10
-4

. When

the optimality gap is less than 10
-5

 or change of phases is detected, the criteria

change to ||rk|| < 10
−8

. The maximum number of iterations of the conjugate

gradient method is equal to the system dimension.

5.2. Test Problems

In this work, 41 test problems were considered, all they are freely available. The

problems are from NETLIB (Gay, 1985) (http://www.netlib.org) and QAPLIB

(Burkard et al., 1991) collections.

Annals of Management Science 59

Table 3 contains the basic statistics about the test problems. Column

Dimension gives the number of rows and columns of the test problems after

preprocessing.

Table 3: Problems statistics

Problem Dimension Collection Problem Dimension Collection

25fv47 788 × 1843 NETLIB forplan 121 × 447 NETLIB

adlittle 55 × 137 NETLIB hil12 1355 × 3114 QAPLIB

agg2 514 × 750 NETLIB israel 174 × 316 NETLIB

agg3 514 × 750 NETLIB kb2 43 × 68 NETLIB

bandm 240 × 395 NETLIB maros 655 × 1437 NETLIB

blend 71 × 111 NETLIB nug05 210 × 225 QAPLIB

bnl2 1964 × 4008 NETLIB nug06 372 × 486 QAPLIB

boeing1 331 × 697 NETLIB nug07 602 × 931 QAPLIB

boeing2 125 × 264 NETLIB nug08 912 × 1632 QAPLIB

bore3d 81 × 138 NETLIB nug12 3192 × 8856 QAPLIB

capri 241 × 436 NETLIB nug15 6330 × 22275 QAPLIB

chr20b 4219 × 7810 QAPLIB qap12 2794 × 8856 QAPLIB

chr20c 4219 × 7810 QAPLIB qap15 5698 × 22275 QAPLIB

chr22b 5587 × 10417 QAPLIB rou10 839 × 1765 QAPLIB

chr25a 8149 × 15325 QAPLIB rou20 7359 × 37640 QAPLIB

d6cube 403 × 5444 NETLIB scr12 1151 × 2784 QAPLIB

degen2 444 × 757 NETLIB scr15 2234 × 6210 QAPLIB

degen3 1503 × 2604 NETLIB scr20 5079 × 15980 QAPLIB

e226 198 × 429 NETLIB ste36b 27683 × 131076 QAPLIB

els19 4350 × 13186 QAPLIB stocfor2 1980 × 2868 NETLIB

finnis 438 × 935 NETLIB

5.3. Obtained Results

In order to compare the various techniques, we have adopted as a standard version

the one which considers the preconditioner hybrid approach and uses the

techniques described in sections 3.2, 4.2, 4.4, 4.7, 4.9, 4.11, 4.12 but not the

techniques in sections 4.3 and 4.10.

 Table 4 presents a comparison of the standard version total running time

against versions that consider only one non default technique in computing the

splitting preconditioner. The remaining columns have the following meanings:

 Split: only the splitting preconditioner is used;

 NoRefac: matrix B is not refactored;

 B: matrix B is computed at each iteration;

 NoSing: singleton rows and columns are not searched;

 NoKey: does not use key columns;

 Match: matching during LU;

 IncLU: compute incomplete LU;

60 C. Ghidini, A. Oliveira and D. Sorensen

 NoLI: does not reorder linearly independent columns;

 NoOrd: does not reorder columns during LU factorization.

 A comparison between columns Split and Stand leads to the conclusion

that starting with the splitting preconditioner affects the performance approach

negatively in the great majority of cases. Moreover, some problems, not presented

here, are solved before the change of phase occurs. For such problems, the time

difference in favor of the standard approach is even lager. Finally, the standard

approach is more robust since it solves a larger number of problems.

 Using key columns produces mixed results. Using it achieve better results

for 43% of the problems while it worsens the performance in 34% of the

problems. With respect to the matching, (Sec 4.10), these values are 42% and

27%, respectively. However, for most the larger problems, it seems to be

advisable not to perform the matching. The incomplete LU factorization does not

change the time in a significant way. However, it loses robustness, in particular

among larger problems.

 The standard approach that reorders the linearly independent columns is

both faster and more stable than where the reordering is not done. Not reordering

during the LU factorization also has a negative effect on the performance of the

standard performance approach.

 The approach that does not refactor the matrix is slower than the standard

one, especially for large-scale problems. For instance, the ste36b problem running

time increases about 66%. This result is confirmed by the nonzero entries average

number which significantly reduces in the refactored matrix. For ste36b problem,

this reduction goes up to 72% (see Table 5). A similar result with respect to

running time is achieved when matrix B is computed at each iteration, in

particular for large-scale problems, as well. When singleton rows and columns are

not searched, many problems are not solved and the remaining ones reveal a time

increase of order about 6.2 in average.

 Table 5 compares the average number of nonzero entries in the standard

refactored matrix approach with the approach that does not refactor the matrix for

problems with large total running time. Furthermore, in order to give a better idea

of the problems size, the A column gives the constraint matrix number of entries

of the preprocessed problems. The ADA
t
 column shows the number of nonzeros

entries of the lower triangular half and L column has the number of nonzero

entries of the Cholesky factor, which is not needed in the presented approach.

 Regarding iteration counts the results are almost the same for all variations

studied and are not shown. In majority of the cases, there was no better approach.

In some cases the difference was just one iteration.

 Finally, we can conclude that the standard approach is more robust and

efficient in solving all the tested problems. However, there is room for

improvement. If we select the best time for all the other variants to compare

against the standard approach, the latter is faster for about 32% of the tested

problems.

Annals of Management Science 61

 Table 4: Total running time (s) - * means that the method failed

Problem

m
Stand Split NoRefa

c
B NoSing NoKey Match IncLU NoLI NoOrd

25fv47 2,66 8,23 2,69 2,67 * 2,67 2,65 2,66 2,64 2,69

adlittle 0,00 0,01 0,00 0,01 * 0,01 0,01 0,01 0,00 0,00

agg2 0,67 0,80 0,67 0,66 1,47 0,67 0,66 0,67 0,70 0,68

agg3 0,50 0,65 0,50 0,45 1,18 0,50 0,49 0,49 0,49 0,50

bandm 0,15 0,31 0,16 0,15 * 0,16 0,16 0,16 0,16 0,16

blend 0,00 0,01 0,01 0,01 0,00 0,01 0,01 0,01 0,00 0,00

bnl2 7,32 11,20 7,35 6,13 * 7,38 7,23 7,30 7,38 7,41

boeing1 0,27 0,23 0,28 0,23 * 0,27 0,27 0,27 0,28 0,28

boeing2 0,03 0,03 0,03 0,04 * 0,03 0,03 0,03 0,03 0,03

bore3d 0,02 0,02 0,02 0,02 0,06 0,02 0,02 0,02 0,02 0,03

capri 0,08 0,11 0,09 0,09 * 0,09 0,09 0,09 0,09 0,09

chr20b 15,86 10,04 16,27 14,36 16,15 15,58 16,04 15,91 16,15 16,02

chr20c 12,19 6,78 12,28 12,26 12,74 12,18 12,22 12,24 12,70 12,31

chr22b 16,35 18,04 16,25 16,12 17,90 15,76 16,22 16,35 16,52 17,73

chr25a 43,26 44,62 43,14 43,72 46,12 41,32 43,55 43,37 43,73 48,01

d6cube 2,02 3,73 2,03 2,05 * 2,09 1,93 2,17 1,94 2,04

degen2 0,37 0,32 0,35 0,43 * 0,29 0,35 0,35 0,33 0,36

degen3 8,35 6,54 8,44 13,53 * 5,56 8,32 8,34 7,55 8,50

e226 0,19 0,36 0,18 0,18 * 0,18 0,18 0,18 0,18 0,18

els19 93,80 112,37 94,98 336,61 267,18 58,59 97,39 94,20 123,13 95,19

finnis 0,26 * 0,27 0,19 * 0,26 0,26 0,26 * 0,26

forplan 0,17 0,75 0,17 0,17 0,18 0,17 0,17 0,16 0,17 0,17

hil12 7,65 11,60 7,61 9,54 8,27 6,53 7,65 7,68 8,89 7,65

israel 0,13 0,12 0,13 0,13 * 0,14 0,12 0,13 0,13 0,13

kb2 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00

maros 2,50 * 2,56 2,49 * 2,51 2,48 2,49 2,82 2,54

nug05 0,03 0,03 0,02 * 0,05 0,03 0,03 0,02 * 0,03

nug06 0,12 0,12 0,12 0,12 0,15 0,11 0,12 0,12 0,12 0,12

nug07 0,48 0,62 0,49 0,58 0,48 0,41 0,48 0,48 0,53 0,50

nug08 1,18 1,76 1,20 1,50 1,25 1,31 1,20 1,17 1,37 1,20

nug12 156,10 313,59 169,31 184,11 147,76 189,64 155,09 * * 188,36

nug15 1592,32 5585,4

5

2156,89 1900,5

2

* 1669,4

5

1581,81 * 2011,0

6

1610,35

qap12 151,83 265,37 176,75 189,50 144,55 139,42 151,26 * 168,44 153,12

qap15 4711,82 * 6617,60 4897,6

1

* 3859,0

9

* * 3562,1

9

*

rou10 1,74 2,63 1,75 2,15 1,80 1,61 1,77 1,75 2,27 1,75

rou20 1769,07 8199,0

2

1375,91 10557,

01

1776,06 1523,4

1

1766,24 * 2074,5

2

1798,90

scr12 1,80 1,89 1,81 1,88 8,19 1,74 1,80 1,80 1,86 1,80

scr15 11,62 12,84 11,66 20,75 * 8,56 11,49 11,56 13,61 11,69

scr20 138,56 169,12 138,91 224,79 858,26 92,98 144,43 137,95 169,11 139,76

ste36b 20957,7

7

* 34725,2

7

34768,

03

* * 25477,8

5

* 38422,

29

25633,6

5 stocfor2 2,56 * 2,63 2,11 * 2,57 2,53 2,55 2,59 2,60

62 C. Ghidini, A. Oliveira and D. Sorensen

Table 5: Number of nonzero entries

Problem A ADA
t
 L Stand NoRefac

nug12 33528 57217 2793152 400587 576890

nug15 85470 150448 11053969 950503 1468514

qap12 33528 60181 2138580 382126 556144

qap15 85470 155986 8197968 998538 2443669

rou20 152980 356689 20818131 3211137 3175678

ste36b 512640 1564487 176625274 4278712 14838724

6. Conclusions

An important advantage of the splitting preconditioner is that it becomes better in

some cases as the interior point method advances towards an optimal solution

since the linear systems are difficult to solve by iterative methods using

traditional preconditioners. That is a very interesting characteristic given that the

linear systems are known to be very ill-conditioned close to a solution. However,

an efficient implementation of the splitting preconditioner is not trivial. In this

work, we have presented numerical experiments that illustrate the performance of

several strategies that speed up the computation of the splitting preconditioner. A

standard method is proposed and approaches that can lead to future improvement

are suggested. These include scaling the normal equations system, computing an

incomplete LU factorization, using a hash function to quickly detect dependent

columns and develop new ways for fast detect symbolically independent columns.

On the other hand, a generic preconditioner should be used in the first

interior point method iterations when the linear systems are not much ill-

conditioned and the nice features of the splitting preconditioners are not yet at

work. At the transition stage, simple algorithms for linear programming problems

can be used in order to add robustness to the proposed approach.

Acknowledgements

This research was sponsored by the Brazilian Council for the Development of

Science and Technology (CNPq) and Foundation for the Support of Research of

the State of São Paulo, (FAPESP).

References

Adler, I., Resende, M. G. C., Veiga G. & Karmarkar, N. (1989). An

implementation of Karmarkar’s algorithm for linear programming. Math.

Programming, 44, 297-335.

Al-Jeiroudi, G., Gondzio, J. & Hall, J. A. J. (2008). Preconditioning indefinite

systems in interior point methods for large scale linear optimization.

Optimization Methods and Software, 23, 345-363.

Annals of Management Science 63

Andersen, E. D. (1995). Finding all linearly dependent rows in large-scale linear

programming. Optimization Methods and Software, 6, 219-227.

Bergamaschi, L., Gondzio J. & Zilli G. (2004). Preconditioning indefinite

systems in interior point methods for optimization. Computational

Optimization and Applications, 28, 149-171.

Bergamaschi, L., Gondzio, J., Venturin, M. & Zilli, G. (2007). Inexact constraint

preconditioners for linear systems arising in interior point methods.

Computational Optimization and Applications, 36, 137-147.

Bocanegra, S., Campos, F. F. & Oliveira, A. R. L. (2007). Using a hybrid

preconditioner for solving large-scale linear systems arising from interior

point methods. Computational Optimization and Applications, 36, 149-164.

Burkard, R. E., Karish, S. E. & Rendl, F. (1991). QAPLIB - A quadratic

assignment problem library problems. European Journal of Operational

Research, 55, 115-119.

Campos, F. F. & Birkett, N. R. C. (1998). An efficient solver for multi-right hand

side linear systems based on the CCCG() method with applications to

implicit time-dependent partial differential equations. SIAM J. Sci. Comput.,

19, 126-138.

Chai, J. S. & Toh, K. C. (2007). Preconditioning and iterative solution of

symmetric indefinite linear systems arising from interior point methods for

linear programming. Computational Optimization and Applications, 36,

221-247.

Coleman, T. F. & Pothen, A. (1987). The null space problem II. Algorithms.

SIAM J. Alg. Disc. Meth., 8, 544-563.

Czyzyk, J., Mehrotra, S., Wagner, M. & Wright, S. J. (1999). PCx an interior

point code for linear programming. Optimization Methods & Software,

11(2), 397-430.

Dantzig, G. B. & Thapa, M. N. (1992). Linear Programming 2: Theory and

Extensions. Springer, New York.

Duff, I., Erisman, A. & Reid, J. (1986). Direct methods for sparse matrices.

Clarendon Press, Oxford.

Duff, I. S. (1981). On algorithms for obtaining a maximum transversal. ACM

Trans. Math. Software, 7, 315-330.

El-Bakry, A. S., Tapia, R. A. & Zhang, Y. (1994). A study of indicators for

identifying zero variables in interior-point methods. SIAM Rev., 36, 45-72.

Gay, D. M. (1985). Electronic mail distribution of linear programming test

problems. Mathematical Programming Society COAL Newsletter, 13, 10-2.

Ghidini, C. T. L. S., Oliveira, A. R. L., Silva, J. & Velazco, M. I. (2012).

Combining a hybrid preconditioner and an optimal adjustment algorithm to

accelerate the convergence of interior point methods. Linear Algebra and its

Applications, 218, 1267-1284.

64 C. Ghidini, A. Oliveira and D. Sorensen

Gondzio, J. (1996). Multiple centrality corrections in a primal-dual method for

linear programming. Computational Optimization and Applications, 6, 137-

156.

Gondzio, J. (2012). Interior point methods 25 years later. European Journal of

Operational Research, 218, 587-601.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.

Combinatorica, 4, 373-395.

Mehrotra, S. (1992). On the implementation of a primal-dual interior point

method. SIAM Journal on Optimization, 2, 575-601.

Momoh, J. A., El-Hawary, M. E. & Adapa, R. (1999). A review of selected

optimal power flow literature to 1993, part II Newton, linear programming

and interior point methods. IEEE Transactions on Power Systems, 14, 105-

111.

Oliveira, A. R. L. (1997). A new class of preconditioners for large-scale linear

systems from interior point methods for linear programming, tech. rep.,

PhD Thesis, TR97-11, Department of Computational and Applied

Mathematics, Rice University, Houston TX.

Oliveira, A. R. L. & Sorensen, D. C. (2005). A new class of preconditioners for

large-scale linear systems from interior point methods for linear

programming. Linear Algebra and Its Applications, 394, 1-24.

Resende, M. G. C. & Veiga, G. (1993). An efficient implementation of a network

interior point method. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 12, 299-348.

Velazco, M. I., Oliveira, A. R. L. & Campos, F. F. (2010). A note on hybrid

preconditions for large scale normal equations arising from interior-point

methods. Optimization Methods and Software, 25, 321-332.

