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Abstract  
 

In this work, iterative methods are used to solve the linear systems of equations 

arising from interior point methods. Since these systems of equations are very 

ill-conditioned near a solution, the design of specially tailored preconditioners 

is an important implementation issue. On the other hand, the early linear 

systems of  equat ions do not present the same features and it is advisable to 

adopt hybrid preconditioners that begin as a generic preconditioner and adapt 

during the course of the iteration, becoming ever more specialized as convergence 

takes place. During the initial iterations, a controlled Cholesky factorization is 

used. As convergence takes place, a splitting, the splitting preconditioner is 

adopted. Its major advantage is its excellent behavior near a solution of the 

linear program. This desirable feature has a price. The preconditioner could be 

very expensive to compute. A careful implementation must be performed in 

order to achieve competitive results regarding both: speed and robustness. An 

effective implementation of the splitting preconditioner relies upon finding a 

suitable set of linearly independent columns to form a nonsingular matrix from 

the constraint matrix. Several strategies to help finding such set of columns are 

presented. Numerical experiments are carried out in order to illustrate the 

performance of the given strategies.  
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1. Introduction 

 
The development of sophisticated software to solve linear optimization problems 

by interior point methods has started since the early works on this subject. There 

are three main research lines aimed at improving the efficiency of such methods 

for solving large-scale problems: reduction of the total number of iterations, 

techniques to obtain a fast iteration and specific methods for particular classes of 

problems. 
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This work addresses the second one. Iterative methods are used to solve the  

linear systems of equations which are the most expensive step at each iteration of 

interior point methods. Since such systems are very ill-conditioned near a 

solution, the design of specially tailored preconditioners is an important 

implementation issue. On the other hand, since the early linear systems do not 

present the same features, it is advisable to adopt hybrid preconditioners that 

begin as a generic preconditioner and adapt during the course of the iteration, 

becoming ever more specialized as convergence takes place (Bocanegra et al., 

2007). 

During the initial iterations a controlled Cholesky factorization is adopted  

(Campos & Birkett, 1998). Its major advantage is the control parameter that 

allows the preconditioner to vary all way from a diagonal preconditioner to the 

full Cholesky factorization, if desired.  At the onset of convergence, a splitting 

preconditioner is used (Oliveira & Sorensen, 2005). Its major advantage is its 

excellent behavior near a solution of the linear program.  However, this desirable 

feature has a price: the preconditioner could be very expensive to compute. A 

careful implementation must be performed in order to achieve competitive 

numerical results regarding both: speed and robustness. An effective 

implementation of the splitting preconditioner depends crucially upon finding a 

suitable set of linearly independent columns to form a nonsingular matrix, to be 

factored, from the constraint matrix.  

 There are several techniques for finding such a set of columns such as the 

delayed update form for the LU factorization, the symbolic dependent columns, 

the symbolic independent columns, the combination of symbolic dependent and 

independent columns and strongly connected components. Some are well known 

and already applied in other contexts (Coleman & Pothen, 1987; Duff & Reid, 

1986; El-Bakry et al., 1994). Others were developed to compute the splitting 

preconditioner (Oliveira, 1997; Oliveira & Sorensen, 2005). Among the 

techniques used is the study of the nonzero structure of the constraint matrix to 

speed up the numerical factorization, such as using key columns, symbolically 

dependent and independent columns, finding strongly connected components 

(Oliveira & Sorensen, 2005). Other implementation issues, include ways for 

changing preconditioners, are also discussed in (Ghidini et al., 2012; Velazco et 

al., 2010). 

 The choice of the controlled factorization is justified due to the 

possibility of computing an inexpensive preconditioner in the initial interior 

point iterations and, as the linear systems become more ill conditioned, the 

controlled preconditioner can be improved with just the change of a parameter 

value. Numerical experiments illustrating the effectiveness of such strategies in 

order to solve large scale linear programming problems are presented in 

Bocanegra et al. (2007) and Velazco et al. (2010). 

 This work is organized as follows: Section 2 presents the predictor-corrector 

interior point method, defines its search directions and explains how to solve the 

resulting linear systems of equations. The controlled Cholesky factorization and 
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splitting preconditioners are discussed in this section. Sections 3 and 4 study 

several techniques in order to achieve an efficient implementation of the splitting 

preconditioner. In Section 5 the numerical experiments are shown and discussed. 

Conclusions follow in Section 6. 
 

2. Primal-Dual interior point methods 

 
Consider the linear programming problem in the standard form: 

 
Min c

t
x 

s.t.  Ax = b ,            (2.1)

    x ≥ 0, 

 

where A is a full row rank m×n matrix and c, b and x are column vectors of 

appropriate dimension. 

 Associated with problem (2.1) is the dual linear programming problem 

 

Max  b
t
 y 

s.t.  A
t
 y + z = c,                                    (2.2)

   z ≥ 0, 

 

where y is an m-vector of free variables and z is the n-vector of dual slack 

variables. The duality gap is defined as c
t
x - b

t
y. It reduces to x

t
z for feasible 

points. 

 Since Karmarkar (1984) presented the first polynomial time interior point 

method for linear programming, many methods have appeared. One of the best 

among them is the predictor-corrector method (Mehrotra, 1992; Momoh et al., 

1999). In the predictor-corrector approach, the search directions are obtained by 

solving two linear systems of equations by applying Newton’s methods to the 

KKT conditions. First we compute the affine directions: 
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where X = diag(x), Z = diag(z) and the residuals primal, dual and complementarity 

are given by: rp = b - Ax, rd = c - A
t
y - z and ra = -XZe and e is the vector of all 

ones. Then, the search directions (∆x, ∆y, ∆z) are computed solving (2.3) with ra 

replaced by  
 

rc = µe - X Z e - eZ
~

X
~
 , 

 

where µ is the centering parameter. 
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Multiple corrections could be computed in order to improve the predictor 

corrector (Gondzio, 1996). Each additional direction is obtained by solving one 

linear system of equations with the matrix given above.  
 

2.1. Computing the Search Directions 

 

The computational cost at each iteration is dominated by the solution of linear 

systems such as (2.3). Since the systems share the same matrix, we will restrict 

the discussion to one linear system. 

By eliminating the variables ∆z the system reduces to: 
 








 











 

p
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t

r
rXr

=
Δy
Δx
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 A
AD 1

0
,                                         (2.4) 

 

where D = X
-1

Z is an n×n diagonal matrix and the lower block diagonal matrix 0 

has dimension m×m (recall that A ∈ ℜm×n). We refer to (2.4) as the augmented 

system.  

Eliminating ∆x from (2.4) we get   ADA
t
 ∆y = rp + A(Drd – Z

-1
ra ), which is 

called the normal equations system.  
We remark that the augmented and normal systems of equations for problems 

with bounded variables have the same structure as the systems of equations in the 

standard form. Therefore, the ideas developed here can be readily applied to such 

problems. 

 

2.2. Approaches for Solving Linear Systems of Equations 

 

Using the Cholesky factorization of the normal systems of equations for 

computing the search directions in interior point methods is by far the most 

widely used approach (see for example (Adler et al.,1989; Czyzyk et al., 1999;  

Gondzio, 2012). However, the factored matrix can have much less sparsity and is 

often more ill-conditioned than the matrix of the augmented system (2.4). Solving 

the augmented system by direct methods is another option (Bergamaschi et al., 

2004; Al-Jeiroudi et al., 2008). However, the sequence of pivots in the 

decomposition depends on the numerical values and this approach while robust, is 

in general more expensive (Gondzio, 2012). Moreover, the direct approach 

cannot be applied for some classes of large scale problems due to memory 

and/or time limitations. For these problems, a preconditioned iterative method 

for the solution of the linear system would be the chosen approach   

(Bergamaschi et al., 2007; Bocanegra et al., 2007; Oliveira & Sorensen, 2005). 

In most applications, however, it is essential to modify a linear system of 

equations that is very difficult to solve to obtain an equivalent system that is 

easier to solve by the iterative method. This technique is known as 

preconditioning. Again, whenever the choice between the augmented systems or 

the normal systems of equations arises, most researchers chose to solve the 



Annals of Management Science 47 

 

 

 
 

augmented system since it is less ill-conditioned (Bergamaschi et al., 2007; Chai 

& Toh, 2007; Gondzio, 2012). We work with the normal systems equations 

because it is positive definite, allowing the use of the conjugate gradient method. 

In addition, the splitting preconditioner works very well in the final iterations 

where the linear system is highly ill-conditioned. 

 Since the iterative methods require matrix only for computing matrix-

vector products, there is no need to compute the normal equations unless the 

preconditioner depends on it. On the other hand, a new trend in the past few years 

is to use of simple linear programming methods in order to give an advanced 

starting point for interior point methods. This reduces the total number of 

iterations. The von Neumann's algorithm is one of the first to be used in such 

applications since its iteration is very cheap and it has fast initial convergence 

(Dantzig & Thapa, 1992).  

 In this work, we perform a few iterations of the optimal adjustment 

algorithm for p coordinates (Ghidini et al., 2012), a simple linear programming 

method, before the change of preconditioners, to deliver a point closer to an 

optimal solution for the splitting preconditioner. This approach closes the gap in 

the transition of preconditioners for some tested problems. 
 

2.3. The Splitting Preconditioner 

 

The Splitting preconditioner, proposed in Oliveira and Sorensen (2005), is a 

generalization of the preconditioner proposed in Resende and Veiga (1993) in the 

context of the minimum cost network flow problem.  

The splitting preconditioner is computed as follows:  

Let A = [B N ]P, where P ∈ ℜn×n is a permutation matrix such that B ∈ ℜm×m is 

nonsingular and N ∈ ℜm×(n-m), then 
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The preconditioner is given by 121  BD /
B and the preconditioner matrix M  is 

as follows: 
 

  t
m

/
B

tt/
B GG+I=DBADABDM 21121  ,   

 

where 21121 /
N

/
B NDBDG   .  

 The product B
-1

N can be seen as a scaling of the linear programming 

problem. Close to a solution, at least n - m entries of D are small. Thus, with a 

suitable choice of the B columns, the diagonal entries of 
1

BD  and DN become very 

small. In this situation, G approaches the zero matrix, M approaches the identity 

matrix and both the largest eigenvalue of M and 2(M) approach one. 
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2.4. Controlled Cholesky Factorization Preconditioner 

 

The Controlled Cholesky Factorization (CCF) preconditioner, designed for 

solving general positive definite systems (Campos & Birkett , 1998), can be 

seen as a variation of the incomplete Cholesky factorization. The main objective 

of this factorization is to build a preconditioned matrix that has grouped 

eigenvalues and which is near the identity in order to accelerate the convergence 

of the conjugate gradient method. 

 The Cholesky factorization of the matrix ADA
t
 is as follows:  

 

RLLLLADA ttt  , 

 

where L represents the factor obtained when the factorization is complete, L

represents a factor obtained when factorization is incomplete and R is a 

remainder matrix. 

 Matrix L  is used as a preconditioner matrix for ADA
t
,  

 

tt LADAL 1      tttt LLLLLLLL=   11 . 

 

 Let F = LL  . Replacing L in the last equation, we have  

 

     .FL +IFL +I=LADAL
t-

m
-

m
tt 111   

 

 Note that when LL   then F 0 and, therefore,   m
tt ILADAL 1 .   

 The controlled Cholesky factorization is based on the minimization of the 

Frobenius norm of F. Therefore, when ||F||0 then ||R||0. 

 Consider the following problem: 

 

Min  


m

j jF
cF

1

2
, with 

2

1 


m

j ijijj llc , 

 

where, lij  are elements of L.  

 Splitting cj in two sums leads to:   
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where tj is the number of nonzero entries below the diagonal in the jth column 

of matrix ADAt  and η is the number of extra entries allowed per column in the 

incomplete factorization.  

 The first summation contains all tj + η nonzero entries of the jth column 

of L  . The second one has only the remaining entries of the complete factor L 
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which do not have the corresponding entries in L . Thus, the problem can be 

solved using the following heuristic:  

1. Increasing η (allowing more fill-ins). The term cj should decrease 

because the first summation contains more elements.   

2. Choosing the tj + η largest entries of L in an absolute value for 

fixed η. In this case, the largest entries are in the first summation 

leaving only the smallest lij in the second one. 

The preconditioner L  is built by columns. Consequently, it needs only the 

jth column of ADA
t 

at each time, avoiding the computation of the normal 

equations system. 

 

2.5. A Hybrid Preconditioner 

 

Matrix D changes significantly from one interior point iteration to the next and it 

becomes highly ill-conditioned in the final ones. For this reason, it is difficult to 

find a preconditioning strategy that has a good performance over the entire course 

of the interior point iterations. 

 In Bocanegra et al. (2007) it was proposed to apply the conjugate gradient 

method to solve the normal equations system preconditioned by a hybrid 

preconditioner matrix M, 

 

  pad
tt rrXrADMyMADAM   111 , 

 

where yMy t . This approach assumes the existence of two phases during 

interior point iterations. In the first one, the controlled Cholesky preconditioner is 

used to build matrix M. After the change of phases, matrix M is built using the 

splitting preconditioner.  

 In Velazco et al. (2010), a heuristic for change of preconditioners was 

proposed. If the number of iterations needed for the conjugate gradient method to 

achieve convergence is greater than m/6, the parameter η in the controlled 

Cholesky factorization is increased, i e, η = η + 10. The change occurs when η 

exceeds a fixed maximum η. However, this approach can fail to achieve 

convergence for some classes of linear programming problems when the 

controlled Cholesky factorization is not longer effective and at the same time, the 

splitting preconditioner is not yet ready for the job. In order to improve this 

approach, simple algorithms are used in the iteration where the change of phases 

occurs giving a more advanced point towards optimality just before the splitting 

preconditioner is applied (Ghidini et al., 2012). 
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3. Practical Aspects 

 

In this section we discuss a few issues concerning the splitting preconditioner not 

directly related to finding the linearly independent set of columns that form B. 

 

3.1. Inexact Solutions 

 

An idea that immediately comes to mind when using iterative procedures for 

solving the linear systems is to relax the required tolerance. Thus, we start the 

interior point method with a relaxed tolerance (10
-4

) and, whenever an iteration 

does not (at least) halve the gap (x
t
z), the tolerance is changed to the square root 

of machine epsilon. 

 In the context of the predictor-corrector variant there is another place for 

applying this idea. Recall that for computing the search directions, two linear 

systems are solved. The first one gives the perturbation parameter and the 

nonlinear correction for the Newton's method. The second one can be written in 

such a way that it gives already the final search directions. Thus, the first linear 

system may be solved with a more relaxed tolerance than the second one.  

 

3.2. Discarding Dependent Rows 

 

In order for the splitting preconditioner to be built, the constraint matrix A cannot 

have dependent rows. The following procedure finds the dependent rows and 

discards them before the interior point method starts. 

 The techniques to be described in the next section for finding B can be 

applied to the columns ordered by degree. Moreover, rows containing entries that 

are part of singleton columns can be ignored in this factorization since these rows 

are necessarily independent. This idea can be applied in the resulting matrix until 

there are no longer any singleton columns. Thus, finding dependent rows is 

inexpensive most of the time. Actually, there are problems like those with only 

inequality constraints where no factorization is performed at all. This 

factorization can be computed even more efficiently (Andersen, 1995). 

 

4. Computing the Splitting Preconditioner 
 

This class of preconditioners is not a competitive alternative to the direct method 

approach for computing the Cholesky factorization without a careful 

implementation. This is due to the computation of an LU factorization where the 

set of independent columns is unknown at the start of the factorization. This 

factorization may be too expensive for two reasons. First, it may generate too 

many fill-in entries. Second, it may be necessary to factor too many columns 

before the completion of the factorization since the dependent columns must be 

discarded. Several techniques for the implementation of a competitive code are 

discussed below. Most of the techniques presented here concern the computation 
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of the LU factorization and are used on the numerical experiments presented in 

Section 5. 

 Given a good choice of columns from A to form B, this preconditioner 

should work better close to a solution, where the linear systems are highly ill-

conditioned. A strategy to form B is to minimize 21121 /
N

/
B NDBD  . This problem is 

hard to solve. However, it can be approximately solved with a simple heuristic. 

Select the first m linearly independent columns of AD
-1 

with smallest 2-norm. 

This choice of columns tends to produce better conditioned matrices as the 

interior point method approaches a solution, where the linear systems are highly 

ill-conditioned (Velazco et al., 2010). 

 A partition of matrix A has been used before as a preconditioner for 

network interior point methods (Resende & Veiga, 1993). In this situation B is a 

minimum spanning tree and is easy to find. Therefore, the splitting preconditioner 

can be viewed as a generalization. We also remark that the rules for choosing the 

set of columns are not the same. 

 

4.1. Scaling the Columns 

 

Looking at the expression 2121 /
B

tt/
N DBNDG  again, it is tempting to scale the 

matrix after selecting the columns of B such that || G || 0. Lemma 1 shows that 

this idea is not easy to implement since the scaling will disappear on the 

preconditioned matrix (Oliveira, 1997). 
 

Lemma 1 Consider the following scaling of the augmented system 
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Then the preconditioned matrix is independent of the scaling matrix C. 

 

Proof. The scaled matrix is given by 
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 . Its preconditioned form is as follows 
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where AP
t
 = [B N]. This form is independent of C.     

  It is still possible to use the idea of scaling with good results. After 

computing the first LU factorization, the columns not on B can be rescaled giving 
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a new linear programming problem. With a proper choice of the scaling factor, 

the first linear systems will be better conditioned than before and yet the problem 

will not be badly scaled. Before a second LU factorization is computed, the 

original linear programming problem is recovered by undoing the scaling. 

Therefore, the linear programming problem will be properly scaled for the 

remainder of the procedure and the first iterations of the interior point method 

generate better conditioned systems which are the most difficult for this class of 

preconditioners. 

 

4.2. Keeping the Set of Columns 

 

A good property of the splitting preconditioner is that it enables us to work with a 

selected set of columns for some iterations. As a consequence, the preconditioner 

is very cheap to compute for these iterations.  

It is important to note that keeping the matrix B from previous iterations 

does not mean the same preconditioner will be kept since D will change from 

iteration to iteration. Thus, this strategy gives different preconditioners at each 

iteration that are very easy to compute. However, such preconditioners do not 

have the best column set after the first factorization according to the heuristic. 

 
Table 1: KEN13 - New Factorization versus Keeping LU 

Version Factorizations M-Flops Factorization LU 

time (s) 

Triangular systems 

time (s) 

Standard 25 117 74.16 24.82 

Keep LU 4 426 15.46 56.06 

 

 Table 1 illustrates this idea. In column version we have the standard 

approach of computing a factorization at every iteration against the idea for 

keeping the factorization. A new LU factorization is computed whenever the 

preconditioned conjugate gradient method takes more than n/30 iterations to 

converge, where n is the dimension of the linear system. Notice that this version 

computes only four factorizations and it is faster than the standard approach. 

However, it takes more floating point operations on average for solving a linear 

system. The explanation is that there is a high overhead on computing the LU 

factorization. In contrast, the solution of the triangular systems is straightforward 

with practically no overhead.  

In the experiments given later we change the set whenever the iterative 

method takes more iterations than a certain threshold value (m
1/2

) or when the 

solution given by it is not accurate. 

 

4.3. Incomplete LU Factorization 

 

It was observed in practice that the LU factorization often generates too many fill-

in entries. The reason is that no reordering procedure for reducing the number of 
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fill-ins can be used since the columns of the matrix are not known until they are 

accepted as linearly independent.  

Here we discuss another possibility. It consists of computing an 

incomplete LU factorization. The standard incomplete factorization, where the 

nonzero structure of the original matrix coincides with the nonzero structure of 

the triangular matrices L and U, does not work well for this problem (Oliveira, 

1997). On the other hand, the use of drop tolerance seems to be a viable approach. 

The idea is to eliminate any entry smaller than a preset value. For a carefully 

chosen tolerance, this technique can be very useful and it actually gives better 

performance on some of the problems tested in very preliminary experiments. 

This line of research deserves more investigation. 

 

4.4. Using Indicators 

 

Another approach that can be exploited for reducing work on the factorizations 

when the interior point method is close to the solution is the use of indicators (El-

Bakry et al., 1994). An indicator is a tool for determining if a column is not part 

of any optimal basis before the method converges. Such columns can thus be 

eliminated from the problem. In the context of this work, indicators can be used to 

keep these columns at the end of the list for finding an independent set of 

columns, saving work on the factorization. Since these columns are not being 

eliminated from the problem, it is possible to be less rigorous on the way they are 

determined without taking the risk of getting a wrong solution for the linear 

programming problem. Observe that the diagonal entries of D are also valid 

indicators. Thus, the approach adopted as standard in Section 5 actually uses a 

kind of indicator for reordering the columns although on a different manner 

compared to the one described here. 

 

4.5. LU Factorization 

 

For this application, the most economic way to compute the LU factorization is to 

work with the delayed update form. When a linearly dependent column appears, it 

is eliminated from the factorization and the method proceeds with the next 

column in the ordering.  

One of the main drawbacks of a straightforward implementation of the 

splitting preconditioner is the excessive fill-in in the LU factorization. A good 

technique consists of interrupting the factorization when excessive fill-in occurs 

and reordering the independent columns found thus far by the number of nonzero 

entries. The factorization is then restarted from scratch and the process is repeated 

until m independent columns are found. In our implementation we consider a 

factorization to have excessive fill-in if it produces more nonzero entries than the 

normal equations system. 
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4.6. Avoiding Dependent Columns 

 

A more sophisticated approach should identify a set of columns that have 

dependent relationship with another column. Information about such relationship 

can be used to reduce computational time and effort on the following 

factorizations by not considering these columns whenever they appear behind this 

set in the new ordering. 

 In order to have an efficient search for these sets and to avoid excessive 

use of computer memory, this type of information can be stored at the bit level. 

Thus, if A has n columns, a set can be stored on n bits and operating with these 

bits will be much faster than managing arrays of indices. Moreover, memory 

restriction can be a critical issue if arrays are used for storing these sets for large 

scale problems. A hash function could also be used to speed up the 

implementation of this approach. 

 

4.7. Computing a Second LU Factorization 

 

A second factorization is applied on the chosen set of independent columns using 

standard techniques for computing an efficient sparse LU factorization. This 

approach improves the results significantly for some problems because the 

reduction of the floating point operations on the iterative linear system solver 

compensates the extra work for computing the factorization. It also benefits better 

form the predictor-corrector variant because the preconditioner is used for solving 

two linear systems. Therefore, the second factorization is always performed. As a 

welcome side effect, it is not necessary to store U in the factorizations that 

determine B. 

 Table 2 illustrates this savings for problem Truss. This problem is part of 

the Netlib test collection of linear programming problems (Gay, 1985). The 

dimension of the linear system is 1000. Only the iterations where the second LU 

factorization is computed are shown.  

The second factorization is computed whenever the number of nonzero 

entries of L plus U is more than four times the dimension of the linear system. 

The second approach saves work because the time for solving the linear systems 

with a more sparse preconditioner compensates the time for computing the second 

factorization. 

The following techniques are the default options for the second LU 

factorization on our code. We stress that it is not possible to use them on the first 

LU factorization because the structure of B is not known prior to the factorization. 

The columns are permuted by the ordering of B
t
B given by the minimum 

degree ordering. We included a threshold parameter for the choice of the pivot. At 

each step of the factorization, we chose a row permutation with the pivot being 

chosen among all candidates within the threshold. The one with least entries on its 

row for the remaining columns of the original matrix is chosen. We also find 
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strongly connected components to rewrite the matrix in a block triangular form, 

as usually done in square LU factorization. 
 

Table 2: Truss number of nonzero entries 

IP Nonzero Entries Factorization time (s) Triangular systems 

time (s) 

Iteration First LU Second LU First LU Second LU First LU Second LU 

7 21713 15202 0.32 0.35 1.47 0.92 

8 27367 15797 0.23 0.25 1.50 0.83 

9 28159 19195 0.19 0.19 1.13 0.52 

10 37436 17933 0.26 0.28 1.01 0.44 

11 41139 18051 0.35 0.37 1.33 0.32 

12 37369 18140 0.50 0.53 2.22 0.25 

13 37060 17540 0.71 0.75 0.55 0.22 

14 41858 17616 0.46 0.48 0.81 0.20 

15 39400 20661 0.52 0.54 0.83 0.19 

16 40832 17191 0.35 0.38 1.40 0.17 

17 43442 21716 0.37 0.40 2.11 0.18 

18 40826 23510 0.37 0.40 0.38 0.16 

M-Flops 106.8 86.1  

 

 

4.8. Early Detection of Dependent Columns 

 

One difficulty in determining the subset of independent columns relates to the 

number of dependent columns visited in the process. An approach is to verify 

whether a column is dependent or not during the delayed update form of the LU 

factorization. If we find that a candidate column is already dependent on the first 

say, k columns, it is useless to continue updating the candidate column for the 

remaining columns of L. 

 

4.9. Symbolically Dependent Columns 

 

Given a column ordering, we want to find the first set of m independent columns. 

The brute force approach for this problem consists in computing the factorization 

column by column and discarding the (nearby) dependent columns along the way. 

The strategies developed here will indicate when a column can be ignored in the 

factorization. The set of independent columns found by these techniques is the 

same set obtained by the brute force approach.  

Symbolically dependent columns are columns that are linearly dependent 

in structure for all numerical values of their nonzero entries.  The idea is to find a 

set of say k columns with nonzero entries in at most k-1 rows.  This set of 

columns is symbolically dependent.  

Let us first consider a square matrix for simplicity. In this situation, the 

problem is equivalent to permuting nonzero entries onto the diagonal. This 
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problem is equivalent to finding a matching of a bipartite graph where the rows 

and columns form the set of vertices and the edges that are represented by the 

nonzero entries. This idea was first used by Duff (1981) and it is applied as a first 

step for permuting a matrix to block triangular form. If a nonzero entry cannot be 

assigned to the diagonal in the matching process for a given column, that column 

is symbolically dependent.  

 In Coleman & Pothen (1987) this idea is extended to rectangular matrices. 

The authors are concerned with finding a set of independent columns of the 

matrix which gives a sparse LU factorization. Thus, the columns are reordered by 

degree and the matching algorithm applied giving a set of candidate columns, 

denoted here as key columns, which are not symbolically dependent. 

Our idea for using the key columns comes from the fact that the number of 

independent columns before the kth key column on the matrix is at most k-1. 

Therefore, it is possible to speed up the LU factorization whenever we find k-1 

numerically independent columns located before the kth key column. The speed 

up is achieved by skipping all the columns from the current one to the kth key 

column. 

 

4.10. Matching During the Factorization 

 

Sometimes the use of key columns does not save too much work. The reason is 

that often these columns are numerically dependent. Another way to save floating 

point operations is to compute the matching during the factorization. Thus, before 

we update the column we verify whether it is symbolically dependent or not. If it 

is, the column is discarded and the factorization continues with the next column.  

This technique can save computational work because the matching can be 

done on the original matrix instead of the factored one. Moreover, no floating 

point operation is performed.  If many columns are dependent, the overhead 

caused for the ones that are not dependent is compensated reducing the overall 

time for computing the factorization. 

 

4.11. Symbolically Independent Columns 

 

Symbolically independent columns are columns that are linearly independent in 

structure for all numerical values of their nonzero entries. A powerful strategy 

consists in moving the symbolically independent columns to the beginning of the 

ordered list since those columns are necessarily going to be in the factorization. 

Then these columns can be reordered further in order to reduce the number of fill-

ins in the LU factorization. Notice that the symbolically dependent columns can 

be ignored in this step. Thus, we are concerned only with the key columns given 

by the matching algorithm. 

We are not aware of any efficient algorithm for finding all the 

symbolically independent columns from a given ordered set. Therefore, we use 

heuristic approaches to identify some of the symbolically dependent columns.  
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On the description of the heuristic below, we say that column j is the first 

entry column of row i if j contains the first nonzero entry in row i on the ordered 

set. We consider a column j symbolically independent given an ordered set if at 

least one of the following rules applies:  

1. Column j is the first entry column of at least one row;  

2. Column j is the second entry column of a row i and the first entry 

column of row i is also first entry column for at least another row not present on 

column j. 

 This set of rules guarantees that the columns selected are symbolically 

independent but it does not guarantee that all symbolically independent columns 

are found. 

 

4.12. Key Columns and Independent Columns 

 

Another use for key columns is to anticipate the sparse structure of the B matrix 

to be factored.  This information can be used to reduce the number of fill-in 

entries on the factorization. This idea works fine for some problems but it 

deteriorates the preconditioner computational performance on other too much. 

Therefore, it cannot be used as the default approach. One criterion to decide on 

using this approach is the number of symbolically independent columns found. If 

this number is close to the total number of columns, the key columns give a better 

approximation of the sparsity pattern of B since most of the columns in the 

factorization are known. 

 

4.13. Merging Symbolically Independent and Dependent Columns  
 

After reordering the symbolically independent columns, it may be possible to 

reduce still further the number of fill-ins in the factorization by merging the 

symbolically independent and dependent list of columns using the number of 

nonzero entries as the criterion. This is allowed whenever the symbolically 

independent columns remain so. 

It is very expensive to verify whether the columns remain symbolically 

independent at every step of the merging process. Therefore, we use the first 

ordering of the columns as a cheap heuristic. Thus, we move up on the list a 

symbolically dependent column with lower degree provided it remains behind the 

symbolically independent columns with lower index on the first ordering. This 

idea can be implemented very efficiently. 

By placing columns with lower degree into the front we hope to reduce the 

number of fill-ins in the factorization. However, since the symbolically dependent 

columns are less likely to be in the factorization, this approach is not as effective 

as other approaches presented in this section. 
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4.14. Strongly Connected Components 

 

This approach is applied to the key columns. Since the key columns are 

determined by a matching procedure, a permutation for computing the strongly 

connected components is already at hand. Given the strongly connected 

components, their columns are reordered by the splitting criterion.   

In Oliveira & Sorensen (2005) it has been proved that we can look for the 

first symbolically dependent column in its own component considering only the 

rows from the respective component. All columns with smaller index in the 

ordering are symbolically independent.  

Notice that with this approach, the heuristics for finding symbolically 

independent columns can be applied inside each diagonal block. 

 

5. Numerical Experiments 
 

In this section we present several numerical experiments with the hybrid 

preconditioner approach. The experiments are meant to show how the techniques 

for computing the splitting preconditioner work together and to determine which 

ones are going to be adopted as default. 

 The procedures for solving the linear systems with the splitting 

preconditioner are coded in C and applied within the PCx code (Czyzyk et al., 

1999), a state of the art interior point methods implementation. PCx’s default 

parameters are used except that multiple corrections are not allowed and all 

tolerances for the interior point are set to 10
−8

. 

 All the experiments are carried out on an Intel Core 2 Duo 64 bits, 2GB 

RAM and 2.2GHz with operating system Linux. The floating point arithmetic is 

IEEE standard double precision. 

 

5.1. Stopping Criterion 

 

The preconditioned conjugate gradient method is used with a termination criterion 

set by the Euclidean residual norm || . ||2. For solving both systems (affine 

direction and final direction), the termination criteria is set as ||rk|| < 10
-4

. When 

the optimality gap is less than 10
-5

 or change of phases is detected, the criteria 

change to ||rk|| < 10
−8

. The maximum number of iterations of the conjugate 

gradient method is equal to the system dimension. 

 

5.2. Test Problems 

 

In this work, 41 test problems were considered, all they are freely available. The 

problems are from NETLIB (Gay, 1985) (http://www.netlib.org) and QAPLIB 

(Burkard et al., 1991) collections. 
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Table 3 contains the basic statistics about the test problems. Column 

Dimension gives the number of rows and columns of the test problems after 

preprocessing. 
 

Table 3: Problems statistics 

Problem Dimension Collection Problem Dimension Collection 

25fv47 788 × 1843 NETLIB forplan 121 × 447 NETLIB 

adlittle 55 × 137 NETLIB hil12 1355 × 3114 QAPLIB 

agg2 514 × 750 NETLIB israel 174 × 316 NETLIB 

agg3 514 × 750 NETLIB kb2 43 × 68 NETLIB 

bandm 240 × 395 NETLIB maros 655 × 1437 NETLIB 

blend 71 × 111 NETLIB nug05 210 × 225 QAPLIB 

bnl2 1964 × 4008 NETLIB nug06 372 × 486 QAPLIB 

boeing1 331 × 697 NETLIB nug07 602 × 931 QAPLIB 

boeing2 125 × 264 NETLIB nug08 912 × 1632 QAPLIB 

bore3d 81 × 138 NETLIB nug12 3192 × 8856 QAPLIB 

capri 241 × 436 NETLIB nug15 6330 × 22275 QAPLIB 

chr20b 4219 × 7810 QAPLIB qap12 2794 × 8856 QAPLIB 

chr20c 4219 × 7810 QAPLIB qap15 5698 × 22275 QAPLIB 

chr22b 5587 × 10417 QAPLIB rou10 839 × 1765 QAPLIB 

chr25a 8149 × 15325 QAPLIB rou20 7359 × 37640 QAPLIB 

d6cube 403 × 5444 NETLIB scr12 1151 × 2784 QAPLIB 

degen2 444 × 757 NETLIB scr15 2234 × 6210 QAPLIB 

degen3 1503 × 2604 NETLIB scr20 5079 × 15980 QAPLIB 

e226 198 × 429 NETLIB ste36b 27683 × 131076 QAPLIB 

els19 4350 × 13186 QAPLIB stocfor2 1980 × 2868 NETLIB 

finnis 438 × 935 NETLIB    

 

5.3. Obtained Results 

 

In order to compare the various techniques, we have adopted as a standard version 

the one which considers the preconditioner hybrid approach and uses the 

techniques described in sections 3.2, 4.2, 4.4, 4.7, 4.9, 4.11, 4.12 but not the 

techniques in sections 4.3 and 4.10. 

 Table 4 presents a comparison of the standard version total running time 

against versions that consider only one non default technique in computing the 

splitting preconditioner. The remaining columns have the following meanings:  

 

 Split: only the splitting preconditioner is used;  

 NoRefac: matrix B is not refactored;  

 B: matrix B is computed at each iteration;  

 NoSing: singleton rows and columns are not searched;  

 NoKey: does not use key columns;  

 Match: matching during LU;  

 IncLU: compute incomplete LU;  
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 NoLI: does not reorder linearly independent columns;  

 NoOrd:  does not reorder columns during LU factorization. 

 

 A comparison between columns Split and Stand leads to the conclusion 

that starting with the splitting preconditioner affects the performance approach 

negatively in the great majority of cases. Moreover, some problems, not presented 

here, are solved before the change of phase occurs. For such problems, the time 

difference in favor of the standard approach is even lager. Finally, the standard 

approach is more robust since it solves a larger number of problems. 

 Using key columns produces mixed results. Using it achieve better results 

for 43% of the problems while it worsens the performance in 34% of the 

problems. With respect to the matching, (Sec 4.10), these values are 42% and 

27%, respectively.  However, for most the larger problems, it seems to be 

advisable not to perform the matching. The incomplete LU factorization does not 

change the time in a significant way.  However, it loses robustness, in particular 

among larger problems. 

 The standard approach that reorders the linearly independent columns is 

both faster and more stable than where the reordering is not done. Not reordering 

during the LU factorization also has a negative effect on the performance of the 

standard performance approach. 

 The approach that does not refactor the matrix is slower than the standard 

one, especially for large-scale problems. For instance, the ste36b problem running 

time increases about 66%. This result is confirmed by the nonzero entries average 

number which significantly reduces in the refactored matrix. For ste36b problem, 

this reduction goes up to 72% (see Table 5). A similar result with respect to 

running time is achieved when matrix B is computed at each iteration, in 

particular for large-scale problems, as well. When singleton rows and columns are 

not searched, many problems are not solved and the remaining ones reveal a time 

increase of order about 6.2 in average. 

 Table 5 compares the average number of nonzero entries in the standard 

refactored matrix approach with the approach that does not refactor the matrix for 

problems with large total running time. Furthermore, in order to give a better idea 

of the problems size, the A column gives the constraint matrix number of entries 

of the preprocessed problems. The ADA
t
 column shows the number of nonzeros 

entries of the lower triangular half and L column has the number of nonzero 

entries of the Cholesky factor, which is not needed in the presented approach. 

 Regarding iteration counts the results are almost the same for all variations 

studied and are not shown. In majority of the cases, there was no better approach. 

In some cases the difference was just one iteration. 

 Finally, we can conclude that the standard approach is more robust and 

efficient in solving all the tested problems. However, there is room for 

improvement. If we select the best time for all the other variants to compare 

against the standard approach, the latter is faster for about 32% of the tested 

problems.  
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  Table  4: Total running time (s) - * means that the method failed 

Problem

m 
Stand Split NoRefa

c 
B NoSing NoKey Match IncLU NoLI NoOrd 

25fv47 2,66 8,23 2,69 2,67 * 2,67 2,65 2,66 2,64 2,69 

adlittle 0,00 0,01 0,00 0,01 * 0,01 0,01 0,01 0,00 0,00 

agg2 0,67 0,80 0,67 0,66 1,47 0,67 0,66 0,67 0,70 0,68 

agg3 0,50 0,65 0,50 0,45 1,18 0,50 0,49 0,49 0,49 0,50 

bandm 0,15 0,31 0,16 0,15 * 0,16 0,16 0,16 0,16 0,16 

blend 0,00 0,01 0,01 0,01 0,00 0,01 0,01 0,01 0,00 0,00 

bnl2 7,32 11,20 7,35 6,13 * 7,38 7,23 7,30 7,38 7,41 

boeing1 0,27 0,23 0,28 0,23 * 0,27 0,27 0,27 0,28 0,28 

boeing2 0,03 0,03 0,03 0,04 * 0,03 0,03 0,03 0,03 0,03 

bore3d 0,02 0,02 0,02 0,02 0,06 0,02 0,02 0,02 0,02 0,03 

capri 0,08 0,11 0,09 0,09 * 0,09 0,09 0,09 0,09 0,09 

chr20b 15,86 10,04 16,27 14,36 16,15 15,58 16,04 15,91 16,15 16,02 

chr20c 12,19 6,78 12,28 12,26 12,74 12,18 12,22 12,24 12,70 12,31 

chr22b 16,35 18,04 16,25 16,12 17,90 15,76 16,22 16,35 16,52 17,73 

chr25a 43,26 44,62 43,14 43,72 46,12 41,32 43,55 43,37 43,73 48,01 

d6cube 2,02 3,73 2,03 2,05 * 2,09 1,93 2,17 1,94 2,04 

degen2 0,37 0,32 0,35 0,43 * 0,29 0,35 0,35 0,33 0,36 

degen3 8,35 6,54 8,44 13,53 * 5,56 8,32 8,34 7,55 8,50 

e226 0,19 0,36 0,18 0,18 * 0,18 0,18 0,18 0,18 0,18 

els19 93,80 112,37 94,98 336,61 267,18 58,59 97,39 94,20 123,13 95,19 

finnis 0,26 * 0,27 0,19 * 0,26 0,26 0,26 * 0,26 

forplan 0,17 0,75 0,17 0,17 0,18 0,17 0,17 0,16 0,17 0,17 

hil12 7,65 11,60 7,61 9,54 8,27 6,53 7,65 7,68 8,89 7,65 

israel 0,13 0,12 0,13 0,13 * 0,14 0,12 0,13 0,13 0,13 

kb2 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 

maros 2,50 * 2,56 2,49 * 2,51 2,48 2,49 2,82 2,54 

nug05 0,03 0,03 0,02 * 0,05 0,03 0,03 0,02 * 0,03 

nug06 0,12 0,12 0,12 0,12 0,15 0,11 0,12 0,12 0,12 0,12 

nug07 0,48 0,62 0,49 0,58 0,48 0,41 0,48 0,48 0,53 0,50 

nug08 1,18 1,76 1,20 1,50 1,25 1,31 1,20 1,17 1,37 1,20 

nug12 156,10 313,59 169,31 184,11 147,76 189,64 155,09 * * 188,36 

nug15 1592,32 5585,4

5 

2156,89 1900,5

2 

* 1669,4

5 

1581,81 * 2011,0

6 

1610,35 

qap12 151,83 265,37 176,75 189,50 144,55 139,42 151,26 * 168,44 153,12 

qap15 4711,82 * 6617,60 4897,6

1 

* 3859,0

9 

* * 3562,1

9 

* 

rou10 1,74 2,63 1,75 2,15 1,80 1,61 1,77 1,75 2,27 1,75 

rou20 1769,07 8199,0

2 

1375,91 10557,

01 

1776,06 1523,4

1 

1766,24 * 2074,5

2 

1798,90 

scr12 1,80 1,89 1,81 1,88 8,19 1,74 1,80 1,80 1,86 1,80 

scr15 11,62 12,84 11,66 20,75 * 8,56 11,49 11,56 13,61 11,69 

scr20 138,56 169,12 138,91 224,79 858,26 92,98 144,43 137,95 169,11 139,76 

ste36b 20957,7

7 

* 34725,2

7 

34768,

03 

* * 25477,8

5 

* 38422,

29 

25633,6

5 stocfor2 2,56 * 2,63 2,11 * 2,57 2,53 2,55 2,59 2,60 
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Table  5: Number of nonzero entries 

Problem A ADA
t
 L Stand NoRefac 

nug12 33528 57217 2793152 400587 576890 

nug15 85470 150448 11053969 950503 1468514 

qap12 33528 60181 2138580 382126 556144 

qap15 85470 155986 8197968 998538 2443669 

rou20 152980 356689 20818131 3211137 3175678 

ste36b 512640 1564487 176625274 4278712 14838724 

 

6. Conclusions 

 

An important advantage of the splitting preconditioner is that it becomes better in 

some cases as the interior point method advances towards an optimal solution 

since the linear systems are difficult to solve by iterative methods using 

traditional preconditioners. That is a very interesting characteristic given that the 

linear systems are known to be very ill-conditioned close to a solution. However, 

an efficient implementation of the splitting preconditioner is not trivial.  In this 

work, we have presented numerical experiments that illustrate the performance of 

several strategies that speed up the computation of the splitting preconditioner. A 

standard method is proposed and approaches that can lead to future improvement 

are suggested. These include scaling the normal equations system, computing an 

incomplete LU factorization, using a hash function to quickly detect dependent 

columns and develop new ways for fast detect symbolically independent columns.  

On the other hand, a generic preconditioner should be used in the first 

interior point method iterations when the linear systems are not much ill-

conditioned and the nice features of the splitting preconditioners are not yet at 

work. At the transition stage, simple algorithms for linear programming problems 

can be used in order to add robustness to the proposed approach. 
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